

Journal of Organometallic Chemistry 490 (1995) 117-123

Insertion reaction of isocyanide into the Pt–C bonds of 2,5-thienylene-bridged diplatinum complexes and 2-thienyl platinum complexes: molecular structure of $Cl(Et_3P)_2PtC(=NC_6H_4OMe-p)C_4H_2SC$ $(=NC_6H_4OMe-p)Pt(PEt_3)_2Cl \cdot CH_2Cl_2$

Kiyotaka Onitsuka ^a, Kazuyoshi Murakami ^a, Kenji Matsukawa ^a, Kenkichi Sonogashira ^{a,*}, Tomohiro Adachi ^b, Toshikatsu Yoshida ^b

^a Department of Applied Chemistry, Faculty of Engineering, Osaka City University, Sumiyoshi-ku, Osaka 558, Japan ^b Department of Chemistry, Faculty of Integrated Arts and Sciences, University of Osaka Prefecture, Sakai, Osaka 591, Japan

Received 20 July 1994; in revised form 7 September 1994

Abstract

Treatments of 2,5-thienylene-bridged diplatinum complexes $Cl(R_3P)_2PtC_4H_2SPt(PR_3)_2Cl$ (1) with two equivalents of isocyanide cause the insertion of isocyanide into each of the two Pt-C bonds to produce $Cl(R_3P)_2PtC(=NAr)C_4H_2SC(=NAr)-Pt(PR_3)_2Cl$ (2). 2-Thienyl platinum complexes $C_4H_3SPt(PR_3)_2Cl$ (4) also react with isocyanide to give iminoacyl complexes $C_4H_3SC(=NAr)Pt(PR_3)_2Cl$ (5). Further insertion of isocyanide into Pt-C bonds of 2 and 5 was not observed even in the reaction with excess isocyanide. When 1a was treated with an equimolar amount of *p*-tolyl isocyanide, a single-insertion product $Cl(Et_3P)_2PtC(=NC_6H_4Me-p)C_4H_2SPt(PEt_3)_2Cl$ (3b) was obtained altogether with the mixture of 1a and 2a. The molecular structure of $Cl(Et_3P)_2PtC(=NC_6H_4OMe-p)C_4H_2SC(=NC_6H_4OMe-p)Pt(PEt_3)_2Cl \cdot CH_2Cl_2$ (2b) was determined by an X-ray crystallographic analysis and the crystallographic data are as follows: space group, $P2_1/n$; a = 11.044(2), b = 28.086(3) and c = 18.396(3) Å; $\beta = 93.96^\circ$; V = 5692(2) Å³; Z = 4.

Keywords: Platinum; Isocyanide; Crystal structure

1. Introduction

Our current research is focused on the chemistry of unsaturated hydrocarbon-bridged multinuclear complexes since they may provide useful information to elucidate active species on the surface of the heterogeneous catalyst [1]. Previously we prepared 2,5-thienylene- and 2,5'-dithienylene-bridged diplatinum complexes and found that they have the $d_{\pi}-p_{\pi}$ interaction between two platinum atoms through the thienylene group [2]. It is of interest to study the reactivities of these complexes because they may have unique properties owing to the mutual interaction between the two metal atoms through the π -conjugated system. For example, μ -ethynediyl complexes of palladium and platinum, in which two metal atoms are linked by just one acetylene unit, have a unique reactivity towards isocyanide [3]. Therefore we have investigated the reaction of 2,5-thienylene-bridged diplatinum complexes as well as 2-thienyl platinum complexes with isocyanide. We wish to report here the results of the reaction and an X-ray crystallographic analysis of the insertion product.

2. Results and discussion

2.1. Reactions of 2,5-thienylene-bridged diplatinum complexes and 2-thienyl platinum complexes with isocyanide

Migratory insertion of isocyanide into the M-C bond was explained by the fact that the organic group make

^{*} Corresponding author.

⁰⁰²²⁻³²⁸X/95/ $$09.50 \otimes 1995$ Elsevier Science S.A. All rights reserved SSDI 0022-328X(94)05193-3

the nucleophilic attack to the carbon atom of isocyanide on transition metal [4], and it was reported that isocyanide smoothly inserts into the Pd-C bond of 2-thienyl palladium complex owing to the high nucleophilicity of the thienyl group [5]. Thus we examined the reaction of 2,5-thienylene-bridged diplatinum complex (1a) with *p*-tolyl isocyanide in dichloromethane at room temperature, although Pt-C bonds are significantly stronger than Pd-C bonds, but no insertion reaction occurred. When 1a was treated with two equivalents of *p*-tolyl isocyanide in 1,2-dichloroethane under reflux for 18 h, the insertion of isocyanide proceeded and an orange complex (2a), which is stable to air even in solution, was isolated with a 41% yield. Complex 2a was characterized by means of spectroscopic methods. The IR spectrum of 2a showed an absorption at 1530 cm⁻¹ due to ν (C=N), the value being in a reasonable region for an iminoacyl platinum complex [4]. In the ¹H NMR of 2a the resonance attributed to the protons of thienylene are observed at $\delta = 7.85$ ppm as a singlet, and the ³¹P NMR exhibited a singlet signal at $\delta = 15.09$ ppm altogether with the satellite signals ($J_{Pt-P} = 2809$ Hz). These data suggest that one molecule of isocyanide has inserted into each Pt-C bond of 1a, which was also supported by the elemental analysis.

Similar reactions of **1a** with *p*-methoxyphenyl or *p*-nitrophenyl isocyanide gave insertion products **2b** and **2c** respectively. Although the insertion was accelerated by the electron-withdrawing group on isocyanide [6], such a phenomenon was not observed in this reaction. An analogous 2,5-thienylene-bridged complex (**1b**) containing a tributylphosphine ligand also reacted with *p*-tolyl or *p*-methoxyphenyl isocyanide to

produce 2d and 2e respectively. On treatment of 1b with two equivalents of *p*-nitrophenyl isocyanide, however, insertion hardly occurred and the mixture of 2fand the single-insertion product 3a was obtained with a low yield. In contrast, when 1b was treated with four equivalents of *p*-nitrophenyl isocyanide, **2f** was isolated with a 35% yield. Isocyanides having a bulky substituent such as 2,6-xylyl or *tert*-butyl isocyanide did not afford the insertion products. These results indicate that insertion of isocyanide into the Pt-C bonds of 2,5-thienylene-bridged diplatinum complex is affected by the bulkiness of isocyanide and ligands on platinum.

2-Thienyl platinum complex (4a) was treated with one equivalent of p-tolyl isocyanide in 1,2-dichloroethane under reflux to give an insertion product 5a with a 77% yield. Similarly, the treatment of 4a with p-methoxyphenyl or p-nitrophenyl isocyanides afforded 5b and 5c respectively. It should be noted that 4b produced an iminoacyl complex with a moderate yield not only by the reaction with p-tolyl or p-methoxyphenyl isocyanide but also by treatment with pnitrophenyl isocyanide, suggesting that the steric influence in the reaction of 2,5-thienylene-bridged diplatinum complex is greater than that of 2-thienyl platinum complex.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} PR_{3} \\ PR_{3} \\ PR_{3} \end{array} \\ \begin{array}{c} 4a: R=Et \\ 4b: R=Bu \end{array} \end{array} \\ \begin{array}{c} S \\ PR_{3} \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \begin{array}{c} PR_{3} \\ PR_{3} \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \begin{array}{c} PR_{3} \\ PR_{3} \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \begin{array}{c} PR_{3} \\ PR_{3} \end{array} \\ \begin{array}{c} PR_{3} \\ PR_{3} \end{array} \\ \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} PR_{3} \end{array} \\ \end{array} \\ \begin{array}{c}$$

It is well known that a multiple insertion of isocyanide occurs in the reaction with excess amounts of isocyanide [4]. Thus **1a** was treated with four equivalents of p-tolyl isocyanide; we could not obtain, however, any products other than **2a**. Even in the reaction with 20 equivalents of p-nitrophenyl isocyanide a multiple-insertion product was not produced. Attempt to observe a multiple insertion into the Pt-C bond of 2-thienyl complex **4** was also unsuccessful.

When 1a was treated with an equimolar amounts of p-tolyl isocyanide, a single-insertion product 3b was isolated with a 47% yield altogether with the mixture of the starting complex 1a and double-insertion product 2a, the yields of which were determined by means of ¹H NMR as 5% and 11% respectively. In the reaction of butadiyne- or p-diethynylbenzene-bridged dipalladium complex, the insertion of isocyanide into either site of the two Pd-C bonds caused a marked

decrease in reactivity of the other palladium site, which may depend on the lower nucleophilicity of acetylide group by the electron-withdrawing property of the iminoacyl group [3b]. A similar tendency was confirmed in the reaction of 1a, but the difference between the reactivities of 1a and 3b is not so large. On the basis of this result it can be regarded that the 2,5-thienylenebridged diplatinum complex reacts with isocyanide at the two reaction sites independently.

2.2. Molecular structure of $Cl(Et_3P)_2PtC$ - $(=NC_6H_4OMe-p)C_4H_2SC(=NC_6H_4OMe-p)-Pt(PEt_3)_2$ $Cl \cdot CH_2Cl_2$ (2b)

The molecular structure of $Cl(Et_3P)_2PtC$ - $(=NC_6H_4OMe_p)C_4H_2SC(=NC_6H_4OMe_p)Pt(PEt_3)_2$ $Cl \cdot CH_2Cl_2$ (2b) shown in Fig. 1 was determined by a single-crystal X-ray study. The crystallographic data and positional parameters with B_{eq} values for all nonhydrogen atoms are summarized in Tables 1 and 2, and selected bond distances and angles are listed in Table 3. The molecule consists of a geometry in which two platinum atoms are linked by the bis(iminoacyl)-2,5thienylene group. The Pt-C bond lengths are 2.01(2) and 1.99(2) Å, which are comparable with that of 2.027(11) Å in trans-Pt(CMe=NC₆H₄Cl)(PEt₃)₂I [7]. The imino N atoms are located at distances of 3.01(2) and 2.99(2) Å respectively from Pt atoms. These are

Fig. 1. Molecular structure of $Cl(Et_3)_2C(=NC_6H_4OMe_p)$ - $C_4H_2SC(=NC_6H_4OMe-p)Pt(PEt_3)_2Cl$ (2b). Hydrogen atoms are omitted for clarity.

Table 1	
Crystallographic data	for 2h CH.CL

erystanographie data for 20 erryery	
Empirical formula Formula weight	C ₄₅ H ₇₈ N ₂ O ₂ Cl ₄ P ₄ SPt ₂ 1367.07
Crystal color: habit	Pale vellow, prismatic
Crystal dimensions	$0.30 \times 0.20 \times 0.15 \text{ mm}$
Crystal system	Monoclinic
Lattice parameters	
a	11.044 (2) Å
b	28.086 (3) Å
С	18.396 (3) Å
β	93.96 (2)°
V	5692 (2) Å ³
Space grou	$P2_1 / n$ (No. 14)
Z value	4
D _{calc}	1.595 g cm^{-3}
F ₀₀₀	2712
μ(Mo Kα)	53.30 cm^{-1}
2θ range	$6^{\circ} < 2\theta < 50.1^{\circ}$
Number of reflections measured	10859
Number of observations	$3225 (I > 9.0\sigma(I))$
Number of variables	403
Reflection to parameter ratio	8.00
Residuals R; R _w	0.039; 0.044
Goodness-of-fit indicator	3.04
Maximum peak in final difference map	1.02 electrons $Å^{-3}$
Minimum peak in final difference map	-0.61 electrons Å ⁻³

 $R = \Sigma ||F_{0} - |F_{c}|| / \Sigma |F_{0}|; R_{w} = [\Sigma w(|F_{0}| - |F_{c}|)^{2} / \Sigma wF_{0}^{2}]^{1/2}; w =$ $4F_o^2/\sigma^2(F_0)^2$. The goodness-of-fit indicator is the standard deviation of an observation of unit weight $[\Sigma w(|F_0| - |F_c|)^2/(N_0 - N_c)]$ (N_v) ^{1/2} where N_o is the number of observations and N_v the number of variables.

clearly non-bonding distances. The dihedral angle between two coordination planes of Pt is 96.80°, in contrast with the result that the two coordination planes are parallel in $Cl(Et_3P)_2PdC(=NC_6H_5)$ - $C=CC(=NC_6H_5)Pd(PEt_3)_2Cl$ [3d]. The square planes of Pt atom are twisted away from the plane of iminoacyl group PtC(=N)C for 83.99 and 81.90° respectively, which are slightly larger than that of 78.05° in Cl(Et₃P)₂PdC $(=NC_6H_5)C=CC-(=NC_6H_5)Pd(PEt_3)_2Cl$ [3d]. It is noteworthy that the bis(iminoacyl)-2,5-thienylene group has a nearly planar conformation and the dihedral angles between thienylene and iminoacyl groups are 8.13 and 16.04° respectively. However, this can probably be attributed to the crystal-packing force because the significant difference of bond distances and angles was not found in bis(iminoacyl)-2,5-thienylene owing to the conjugation.

3. Experimental section

All reactions were carried out under a nitrogen atmosphere, but the work-up was performed in air. 1 H NMR (399.65 MHz), 13 C NMR (100.10 MHz) and 31 P NMR (161.70 MHz) were measured on a JEOL JMN-A400 spectrometer in CDCl₃. As an internal standard,

Table 2 Positional parameters and B_{eq} for complex 2b·CH₂Cl₂

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Atom	x	у	z	$B_{eq}(Å^2)$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Pt(1)	0.21462(7)	0.22075(3)	0.02555(4)	4.89(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pt(2)	0.24680(7)	-0.00654(3)	0.27494(5)	5.46(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl(1)	0.3805(5)	0.2682(2)	-0.0128(3)	7.5(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl(2)	0.4165(5)	-0.0533(2)	0.3205(3)	8.8(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(1)	0.0162(4)	0.1020(2)	0.1412(3)	5.3(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(1)	0.2598(6)	0.1632(2)	-0.0569(4)	8.1(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P(2)	0.1751(5)	0.2773(2)	0.1105(3)	6.5(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P(3)	0.2732(6)	-0.0376(2)	0.1619(3)	7.1(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(4)	0.2392(7)	0.0289(3)	0.3873(4)	10.3(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(1)	-0.293(1)	0.3020(5)	-0.1576(8)	7(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(2)	-0.245(1)	-0.1292(7)	0.373(1)	10(0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1)	-0.035(2)	0.1809(5)	0.0430(8)	5(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(2)	-0.012(2)	0.0211(5)	0.2392(8)	5(1)
$\begin{array}{cccccc} C(2) & 0.114(2) & 0.1445(7) & 0.113(1) & 5(1) \\ C(3) & 0.229(2) & 0.1380(7) & 0.151(1) & 6(1) \\ C(4) & 0.235(2) & 0.0986(8) & 0.197(1) & 6(1) \\ C(5) & 0.128(2) & 0.0746(7) & 0.198(1) & 5(1) \\ C(6) & 0.102(2) & 0.0304(7) & 0.238(1) & 5(1) \\ C(11) & -0.094(2) & 0.2119(7) & -0.009(1) & 4(1) \\ C(12) & -0.219(2) & 0.2146(8) & -0.009(1) & 6(1) \\ C(13) & -0.289(2) & 0.2443(8) & -0.055(1) & 6(1) \\ C(14) & -0.236(2) & 0.2717(8) & -0.107(1) & 6(1) \\ C(15) & -0.107(2) & 0.2695(8) & -0.104(1) & 7(1) \\ C(16) & -0.039(2) & 0.2394(9) & -0.059(1) & 7(1) \\ C(16) & -0.039(2) & 0.2394(9) & -0.059(1) & 7(1) \\ C(17) & -0.421(2) & 0.3025(7) & -0.163(1) & 8(1) \\ C(21) & -0.062(2) & -0.0183(9) & 0.274(1) & 5(1) \\ C(22) & -0.183(2) & -0.0163(8) & 0.282(1) & 8(2) \\ C(23) & -0.239(2) & -0.054(1) & 0.316(1) & 8(2) \\ C(24) & -0.178(3) & -0.095(1) & 0.342(1) & 7(2) \\ C(25) & -0.057(3) & -0.097(1) & 0.330(2) & 9(2) \\ C(26) & 0.001(2) & -0.060(1) & 0.298(1) & 9(2) \\ C(27) & -0.186(2) & -0.171(1) & 0.397(2) & 11(2) \\ C(31) & 0.181(2) & 0.1082(9) & -0.053(1) & 9.5(7) \\ C(32) & 0.209(2) & 0.068(1) & -0.108(2) & 14(1) \\ C(33) & 0.208(3) & 0.182(1) & -0.163(2) & 14(1) \\ C(34) & 0.229(3) & 0.226(2) & -0.178(2) & 20(1) \\ C(35) & 0.411(3) & 0.157(1) & -0.073(2) & 19(1) \\ C(36) & 0.479(2) & 0.1396(9) & 0.004(2) & 11.6(8) \\ C(41) & 0.039(2) & 0.2719(8) & 0.155(1) & 9.4(6) \\ C(42) & 0.009(2) & 0.3116(9) & 0.211(1) & 10.0(7) \\ C(44) & 0.105(3) & 0.346(1) & 0.028(2) & 13.2(9) \\ C(45) & 0.284(3) & 0.271(1) & 0.195(1) & 12.8(9) \\ C(44) & 0.105(3) & 0.346(1) & 0.013(2) & 15(1) \\ C(54) & 0.173(3) & -0.128(1) & 0.175(1) & 1.0(8) \\ C(54) & 0.173(3) & -0.128(1) & 0.171(1) & 14(1) \\ C(55) & 0.410(5) & -0.023(2) & 0.125(3) & 24(2) \\ C(56) & 0.472(4) & 0.013(1) & 0.138(2) & 20(1) \\ C(64) & 0.193(4) & -0.031(1) & 0.473(2) & 18(1) \\ C(55) & 0.410(5) & -0.023(2) & 0.426(3) & 27(2) \\ C(66) & 0.463(4) & 0.073(1) & 0.376(2) & 20(1) \\ C(101) & 0.753(3) & 0.159(2) & 0.236(1) & 35(2) \\ C(101) & 0.753(3) & 0.159(2) & 0.236(1) & 35(2) \\ C(161) & 0.973(1) & 0.137(2$	C(1)	0.078(2)	0.1811(7)	0.060(1)	4(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)	0.114(2)	0.1445(7)	0.113(1)	5(1)
$\begin{array}{cccccc} C(4) & 0.235(2) & 0.0986(8) & 0.197(1) & 6(1) \\ C(5) & 0.128(2) & 0.0746(7) & 0.198(1) & 5(1) \\ C(6) & 0.102(2) & 0.0304(7) & 0.238(1) & 5(1) \\ C(11) & -0.094(2) & 0.2119(7) & -0.009(1) & 4(1) \\ C(12) & -0.219(2) & 0.2146(8) & -0.009(1) & 6(1) \\ C(13) & -0.289(2) & 0.2443(8) & -0.055(1) & 6(1) \\ C(14) & -0.236(2) & 0.2717(8) & -0.107(1) & 6(1) \\ C(15) & -0.107(2) & 0.2695(8) & -0.104(1) & 7(1) \\ C(16) & -0.039(2) & 0.2394(9) & -0.059(1) & 7(1) \\ C(17) & -0.421(2) & 0.3025(7) & -0.163(1) & 8(1) \\ C(22) & -0.183(2) & -0.0163(8) & 0.282(1) & 8(2) \\ C(23) & -0.052(2) & -0.0163(8) & 0.282(1) & 8(2) \\ C(23) & -0.239(2) & -0.054(1) & 0.316(1) & 8(2) \\ C(24) & -0.178(3) & -0.095(1) & 0.342(1) & 7(2) \\ C(25) & -0.057(3) & -0.097(1) & 0.330(2) & 9(2) \\ C(26) & 0.001(2) & -0.060(1) & 0.298(1) & 9(2) \\ C(27) & -0.186(2) & -0.171(1) & 0.397(2) & 11(2) \\ C(31) & 0.181(2) & 0.1082(9) & -0.053(1) & 9.5(7) \\ C(32) & 0.209(2) & 0.068(1) & -0.108(2) & 14(1) \\ C(33) & 0.208(3) & 0.182(1) & -0.163(2) & 14(1) \\ C(34) & 0.229(3) & 0.226(2) & -0.178(2) & 20(1) \\ C(35) & 0.411(3) & 0.157(1) & -0.073(2) & 19(1) \\ C(35) & 0.411(3) & 0.157(1) & -0.073(2) & 19(1) \\ C(34) & 0.209(3) & 0.336(1) & 0.094(2) & 11.6(8) \\ C(41) & 0.039(2) & 0.2711(8) & 0.155(1) & 9.4(6) \\ C(42) & 0.009(2) & 0.3116(9) & 0.211(1) & 10.0(7) \\ C(43) & 0.209(3) & 0.36(1) & 0.094(2) & 13.2(9) \\ C(44) & 0.105(3) & 0.346(1) & 0.028(2) & 13.2(9) \\ C(45) & 0.173(3) & -0.128(1) & 0.175(1) & 12.8(9) \\ C(44) & 0.105(3) & 0.346(1) & 0.013(2) & 15(1) \\ C(54) & 0.173(3) & -0.128(1) & 0.171(1) & 14(1) \\ C(55) & 0.472(4) & 0.013(1) & 0.138(2) & 20(1) \\ C(54) & 0.173(3) & -0.128(1) & 0.171(1) & 14(1) \\ C(55) & 0.355(5) & 0.078(2) & 0.483(3) & 30(2) \\ C(64) & 0.400(3) & 0.68(1) & 0.396(2) & 14(1) \\ C(65) & 0.355(5) & 0.078(2) & 0.406(3) & 27(2) \\ C(66) & 0.463(4) & 0.073(1) & 0.376(2) & 20(1) \\ C(101) & 0.753(3) & 0.159(2) & 0.236(1) & 327(08) \\ C(101) & 0.753(3) & 0.159(2) & 0.236(1) & 327(08) \\ C(112) & 0.781(1) & 0.138(8) & 0.192(69) & 33(1) \\ C(112) & 0.781(1) & 0.13$	C(3)	0.229(2)	0.1380(7)	0.151(1)	6(1)
$\begin{array}{cccccc} C(5) & 0.128(2) & 0.0746(7) & 0.198(1) & 5(1) \\ C(6) & 0.102(2) & 0.0304(7) & 0.238(1) & 5(1) \\ C(11) & -0.094(2) & 0.2146(8) & -0.009(1) & 4(1) \\ C(12) & -0.219(2) & 0.2146(8) & -0.009(1) & 6(1) \\ C(13) & -0.289(2) & 0.2443(8) & -0.055(1) & 6(1) \\ C(14) & -0.236(2) & 0.2717(8) & -0.107(1) & 6(1) \\ C(15) & -0.107(2) & 0.2695(8) & -0.104(1) & 7(1) \\ C(16) & -0.039(2) & 0.2394(9) & -0.059(1) & 7(1) \\ C(16) & -0.039(2) & 0.2394(9) & -0.059(1) & 7(1) \\ C(17) & -0.421(2) & 0.3025(7) & -0.163(1) & 8(1) \\ C(22) & -0.062(2) & -0.0183(9) & 0.274(1) & 5(1) \\ C(22) & -0.083(2) & -0.054(1) & 0.316(1) & 8(2) \\ C(23) & -0.239(2) & -0.054(1) & 0.316(1) & 8(2) \\ C(24) & -0.178(3) & -0.097(1) & 0.330(2) & 9(2) \\ C(25) & -0.057(3) & -0.097(1) & 0.330(2) & 9(2) \\ C(26) & 0.001(2) & -0.060(1) & 0.298(1) & 9(2) \\ C(27) & -0.186(2) & -0.171(1) & 0.397(2) & 11(2) \\ C(33) & 0.208(3) & 0.182(1) & -0.163(2) & 14(1) \\ C(33) & 0.208(3) & 0.182(1) & -0.163(2) & 14(1) \\ C(34) & 0.229(3) & 0.226(2) & -0.178(2) & 20(1) \\ C(35) & 0.411(3) & 0.157(1) & -0.073(2) & 19(1) \\ C(36) & 0.479(2) & 0.1396(9) & 0.004(2) & 11.6(8) \\ C(41) & 0.039(2) & 0.2719(8) & 0.155(1) & 9.4(6) \\ C(42) & 0.009(2) & 0.3116(9) & 0.211(1) & 10.0(7) \\ C(43) & 0.209(3) & 0.336(1) & 0.094(2) & 15.(1) \\ C(44) & 0.105(3) & 0.346(1) & 0.028(2) & 13.2(9) \\ C(45) & 0.284(3) & 0.271(1) & 0.187(1) & 13.1(9) \\ C(51) & 0.162(2) & -0.0239(9) & 0.090(1) & 10.9(8) \\ C(52) & 0.175(3) & -0.046(1) & 0.013(2) & 15(1) \\ C(44) & 0.105(3) & 0.366(1) & 0.396(2) & 14(1) \\ C(55) & 0.410(5) & -0.023(2) & 0.125(3) & 24(2) \\ C(56) & 0.472(4) & 0.013(1) & 0.138(2) & 20(1) \\ C(51) & 0.162(2) & -0.0239(9) & 0.090(1) & 10.9(8) \\ C(52) & 0.175(3) & -0.023(2) & 0.125(3) & 24(2) \\ C(56) & 0.472(4) & 0.013(1) & 0.138(2) & 20(1) \\ C(61) & 0.095(3) & 0.068(1) & 0.396(2) & 14(1) \\ C(62) & 0.099(3) & 0.094(1) & 0.473(2) & 18(1) \\ C(64) & 0.490(3) & 0.271(1) & 0.376(2) & 20(1) \\ C(64) & 0.493(4) & -0.031(1) & 0.473(2) & 18(1) \\ C(65) & 0.355(5) & 0.078(2) & 0.406(3) & 27(2) \\ C(66) & 0.463(4) & 0.07$	C(4)	0.235(2)	0.0986(8)	0.197(1)	6(1)
$\begin{array}{cccccc} C(6) & 0.102(2) & 0.0304(7) & 0.238(1) & 5(1) \\ C(11) & -0.094(2) & 0.2119(7) & -0.009(1) & 4(1) \\ C(12) & -0.219(2) & 0.2146(8) & -0.009(1) & 6(1) \\ C(13) & -0.289(2) & 0.2443(8) & -0.055(1) & 6(1) \\ C(14) & -0.236(2) & 0.2717(8) & -0.107(1) & 6(1) \\ C(15) & -0.107(2) & 0.2695(8) & -0.104(1) & 7(1) \\ C(16) & -0.039(2) & 0.2394(9) & -0.059(1) & 7(1) \\ C(17) & -0.421(2) & 0.3025(7) & -0.163(1) & 8(1) \\ C(21) & -0.062(2) & -0.0183(9) & 0.274(1) & 5(1) \\ C(22) & -0.183(2) & -0.0163(8) & 0.282(1) & 8(2) \\ C(23) & -0.239(2) & -0.054(1) & 0.316(1) & 8(2) \\ C(24) & -0.178(3) & -0.095(1) & 0.342(1) & 7(2) \\ C(25) & -0.057(3) & -0.097(1) & 0.330(2) & 9(2) \\ C(26) & 0.001(2) & -0.060(1) & 0.298(1) & 9(2) \\ C(27) & -0.186(2) & -0.171(1) & 0.397(2) & 11(2) \\ C(31) & 0.181(2) & 0.1082(9) & -0.053(1) & 9.5(7) \\ C(32) & 0.209(2) & 0.068(1) & -0.108(2) & 14(1) \\ C(33) & 0.208(3) & 0.182(1) & -0.163(2) & 14(1) \\ C(34) & 0.229(3) & 0.226(2) & -0.178(2) & 20(1) \\ C(35) & 0.411(3) & 0.157(1) & -0.073(2) & 19(1) \\ C(36) & 0.479(2) & 0.1396(9) & 0.004(2) & 11.6(8) \\ C(41) & 0.039(2) & 0.2719(8) & 0.155(1) & 9.4(6) \\ C(42) & 0.009(2) & 0.3116(9) & 0.211(1) & 10.0(7) \\ C(43) & 0.209(3) & 0.336(1) & 0.094(2) & 15(1) \\ C(44) & 0.105(3) & 0.346(1) & 0.028(2) & 13.2(9) \\ C(45) & 0.284(3) & 0.271(1) & 0.195(1) & 12.8(9) \\ C(44) & 0.400(3) & 0.267(1) & 0.187(1) & 13.1(9) \\ C(51) & 0.162(2) & -0.0239(9) & 0.090(1) & 10.9(8) \\ C(52) & 0.175(3) & -0.023(2) & 0.125(3) & 24(2) \\ C(54) & 0.173(3) & -0.128(1) & 0.171(1) & 14(1) \\ C(55) & 0.410(5) & -0.023(2) & 0.125(3) & 24(2) \\ C(56) & 0.472(4) & 0.013(1) & 0.138(2) & 20(1) \\ C(61) & 0.095(3) & 0.068(1) & 0.396(2) & 14(1) \\ C(62) & 0.099(3) & 0.094(1) & 0.467(2) & 22(2) \\ C(63) & 0.286(5) & -0.003(2) & 0.483(3) & 30(2) \\ C(64) & 0.193(4) & -0.031(1) & 0.473(2) & 18(1) \\ C(65) & 0.355(5) & 0.078(2) & 0.406(3) & 27(2) \\ C(66) & 0.463(4) & 0.073(1) & 0.376(2) & 20(1) \\ C(101) & 0.753(3) & 0.159(2) & 0.236(1) & 35(2) \\ C(111) & 0.624(2) & 0.1318(8) & 0.1926(9) & 43(1) \\ C(122) & 0.781(1) $	C(5)	0.128(2)	0.0746(7)	0.198(1)	5(1)
$\begin{array}{cccccc} C(11) & -0.094(2) & 0.2119(7) & -0.009(1) & 4(1) \\ C(12) & -0.219(2) & 0.2146(8) & -0.009(1) & 6(1) \\ C(13) & -0.289(2) & 0.2443(8) & -0.055(1) & 6(1) \\ C(14) & -0.236(2) & 0.2717(8) & -0.107(1) & 6(1) \\ C(15) & -0.107(2) & 0.2695(8) & -0.104(1) & 7(1) \\ C(16) & -0.039(2) & 0.2394(9) & -0.059(1) & 7(1) \\ C(17) & -0.421(2) & 0.3025(7) & -0.163(1) & 8(1) \\ C(21) & -0.062(2) & -0.0183(9) & 0.274(1) & 5(1) \\ C(22) & -0.183(2) & -0.0163(8) & 0.282(1) & 8(2) \\ C(23) & -0.239(2) & -0.054(1) & 0.316(1) & 8(2) \\ C(24) & -0.178(3) & -0.095(1) & 0.342(1) & 7(2) \\ C(25) & -0.057(3) & -0.097(1) & 0.330(2) & 9(2) \\ C(26) & 0.001(2) & -0.060(1) & 0.298(1) & 9(2) \\ C(27) & -0.186(2) & -0.171(1) & 0.397(2) & 11(2) \\ C(31) & 0.181(2) & 0.1082(9) & -0.053(1) & 9.5(7) \\ C(32) & 0.209(2) & 0.068(1) & -0.108(2) & 14(1) \\ C(33) & 0.208(3) & 0.182(1) & -0.163(2) & 14(1) \\ C(33) & 0.208(3) & 0.182(1) & -0.163(2) & 14(1) \\ C(34) & 0.229(3) & 0.226(2) & -0.178(2) & 20(1) \\ C(35) & 0.411(3) & 0.157(1) & -0.073(2) & 19(1) \\ C(36) & 0.479(2) & 0.1396(9) & 0.004(2) & 11.6(8) \\ C(41) & 0.039(2) & 0.2719(8) & 0.155(1) & 9.4(6) \\ C(42) & 0.009(2) & 0.3116(9) & 0.211(1) & 10.0(7) \\ C(43) & 0.209(3) & 0.336(1) & 0.094(2) & 15(1) \\ C(44) & 0.105(3) & 0.346(1) & 0.028(2) & 13.2(9) \\ C(45) & 0.284(3) & 0.271(1) & 0.195(1) & 12.8(9) \\ C(44) & 0.400(3) & 0.267(1) & 0.187(1) & 13.1(9) \\ C(51) & 0.162(2) & -0.023(9) & 0.090(1) & 10.9(8) \\ C(54) & 0.289(2) & -0.103(1) & 0.135(1) & 11.0(8) \\ C(54) & 0.173(3) & -0.128(1) & 0.171(1) & 14(1) \\ C(55) & 0.410(5) & -0.023(2) & 0.125(3) & 24(2) \\ C(56) & 0.472(4) & 0.013(1) & 0.138(2) & 20(1) \\ C(61) & 0.095(3) & 0.068(1) & 0.396(2) & 14(1) \\ C(62) & 0.099(3) & 0.094(1) & 0.473(2) & 18(1) \\ C(64) & 0.193(4) & -0.031(1) & 0.473(2) & 18(1) \\ C(65) & 0.355(5) & 0.078(2) & 0.406(3) & 27(2) \\ C(66) & 0.463(4) & 0.073(1) & 0.376(2) & 20(1) \\ C(101) & 0.753(3) & 0.159(2) & 0.236(1) & 35(2) \\ C(101) & 0.753(3) & 0.159(2) & 0.236(1) & 35(2) \\ C(101) & 0.753(1) & 0.159(2) & 0.236(1) & 35(2) \\ C(101) & 0.753(3)$	C(6)	0.102(2)	0.0304(7)	0.238(1)	5(1)
$\begin{array}{cccccc} C(12) & -0.219(2) & 0.2146(8) & -0.009(1) & 6(1) \\ C(13) & -0.289(2) & 0.2443(8) & -0.055(1) & 6(1) \\ C(14) & -0.236(2) & 0.2717(8) & -0.107(1) & 6(1) \\ C(15) & -0.107(2) & 0.2695(8) & -0.104(1) & 7(1) \\ C(16) & -0.039(2) & 0.2394(9) & -0.059(1) & 7(1) \\ C(17) & -0.421(2) & 0.3025(7) & -0.163(1) & 8(1) \\ C(21) & -0.062(2) & -0.0183(9) & 0.274(1) & 5(1) \\ C(22) & -0.183(2) & -0.0163(8) & 0.282(1) & 8(2) \\ C(23) & -0.239(2) & -0.054(1) & 0.316(1) & 8(2) \\ C(24) & -0.178(3) & -0.097(1) & 0.330(2) & 9(2) \\ C(26) & 0.001(2) & -0.060(1) & 0.298(1) & 9(2) \\ C(26) & 0.001(2) & -0.060(1) & 0.298(1) & 9(2) \\ C(27) & -0.186(2) & -0.171(1) & 0.397(2) & 11(2) \\ C(33) & 0.208(3) & 0.182(1) & -0.163(2) & 14(1) \\ C(33) & 0.208(3) & 0.182(1) & -0.163(2) & 14(1) \\ C(34) & 0.229(3) & 0.226(2) & -0.178(2) & 20(1) \\ C(35) & 0.411(3) & 0.157(1) & -0.073(2) & 19(1) \\ C(36) & 0.479(2) & 0.1396(9) & 0.004(2) & 11.6(8) \\ C(41) & 0.039(2) & 0.2719(8) & 0.155(1) & 9.4(6) \\ C(42) & 0.09(2) & 0.3116(9) & 0.211(1) & 10.0(7) \\ C(43) & 0.209(3) & 0.336(1) & 0.094(2) & 15(1) \\ C(44) & 0.105(3) & 0.346(1) & 0.028(2) & 13.2(9) \\ C(45) & 0.284(3) & 0.271(1) & 0.195(1) & 12.8(9) \\ C(46) & 0.400(3) & 0.267(1) & 0.187(1) & 13.1(9) \\ C(51) & 0.162(2) & -0.023(9) & 0.090(1) & 10.9(8) \\ C(52) & 0.175(3) & -0.046(1) & 0.013(2) & 15(1) \\ C(44) & 0.105(3) & 0.346(1) & 0.032(2) & 15(1) \\ C(54) & 0.173(3) & -0.128(1) & 0.171(1) & 14(1) \\ C(55) & 0.410(5) & -0.023(2) & 0.125(3) & 24(2) \\ C(56) & 0.472(4) & 0.013(1) & 0.138(2) & 20(1) \\ C(61) & 0.095(3) & 0.068(1) & 0.396(2) & 14(1) \\ C(62) & 0.099(3) & 0.034(1) & 0.467(2) & 22(2) \\ C(63) & 0.286(5) & -0.003(2) & 0.483(3) & 30(2) \\ C(64) & 0.193(4) & -0.031(1) & 0.473(2) & 18(1) \\ C(65) & 0.355(5) & 0.078(2) & 0.406(3) & 27(2) \\ C(66) & 0.463(4) & 0.073(1) & 0.376(2) & 20(1) \\ C(101) & 0.753(3) & 0.159(2) & 0.236(1) & 35(2) \\ C(111) & 0.624(2) & 0.1318(8) & 0.1926(9) & 43(1) \\ C(12) & 0.781(1) & 0.138(8) & 0.1926(9) & 43(1) \\ C(12) & 0.781(1) & 0.138(8) & 0.1926(9) & 43(1) \\ C(12) & 0.781(1) & 0.13$	C(11)	-0.094(2)	0.2119(7)	-0.009(1)	4(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)	-0.219(2)	0.2146(8)	-0.009(1)	6(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)	-0.289(2)	0.2443(8)	-0.055(1)	6(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)	-0.236(2)	0.2717(8)	-0.107(1)	6(1)
$\begin{array}{ccccccc} C(16) & -0.039(2) & 0.2394(9) & -0.059(1) & 7(1) \\ C(17) & -0.421(2) & 0.3025(7) & -0.163(1) & 8(1) \\ C(21) & -0.062(2) & -0.0183(9) & 0.274(1) & 5(1) \\ C(22) & -0.183(2) & -0.0163(8) & 0.282(1) & 8(2) \\ C(23) & -0.239(2) & -0.054(1) & 0.316(1) & 8(2) \\ C(24) & -0.178(3) & -0.095(1) & 0.342(1) & 7(2) \\ C(25) & -0.057(3) & -0.097(1) & 0.330(2) & 9(2) \\ C(26) & 0.001(2) & -0.060(1) & 0.298(1) & 9(2) \\ C(27) & -0.186(2) & -0.171(1) & 0.397(2) & 11(2) \\ C(31) & 0.181(2) & 0.1082(9) & -0.053(1) & 9.5(7) \\ C(32) & 0.209(2) & 0.068(1) & -0.108(2) & 14(1) \\ C(33) & 0.208(3) & 0.182(1) & -0.163(2) & 14(1) \\ C(34) & 0.229(3) & 0.226(2) & -0.178(2) & 20(1) \\ C(35) & 0.411(3) & 0.157(1) & -0.073(2) & 19(1) \\ C(36) & 0.479(2) & 0.1396(9) & 0.004(2) & 11.6(8) \\ C(41) & 0.039(2) & 0.2719(8) & 0.155(1) & 9.4(6) \\ C(42) & 0.009(2) & 0.3116(9) & 0.211(1) & 10.0(7) \\ C(43) & 0.209(3) & 0.336(1) & 0.094(2) & 15(1) \\ C(44) & 0.105(3) & 0.346(1) & 0.028(2) & 13.2(9) \\ C(46) & 0.400(3) & 0.267(1) & 0.187(1) & 13.1(9) \\ C(51) & 0.162(2) & -0.0239(9) & 0.090(1) & 10.9(8) \\ C(52) & 0.175(3) & -0.046(1) & 0.013(2) & 15(1) \\ C(53) & 0.289(2) & -0.103(1) & 0.155(1) & 11.0(8) \\ C(54) & 0.173(3) & -0.128(1) & 0.171(1) & 14(1) \\ C(55) & 0.410(5) & -0.023(2) & 0.125(3) & 24(2) \\ C(56) & 0.472(4) & 0.013(1) & 0.138(2) & 20(1) \\ C(61) & 0.095(3) & 0.068(1) & 0.396(2) & 14(1) \\ C(62) & 0.099(3) & 0.094(1) & 0.467(2) & 22(2) \\ C(63) & 0.286(5) & -0.003(2) & 0.483(3) & 30(2) \\ C(64) & 0.193(4) & -0.031(1) & 0.138(2) & 20(1) \\ C(101) & 0.753(3) & 0.159(2) & 0.236(1) & 3.7(2) \\ C(101) & 0.753(3) & 0.159(2) & 0.236(1) & 3.7(2) \\ C(11) & 0.624(2) & 0.1318(8) & 0.1926(9) & 3(1) \\ C(112) & 0.781(1) & 0.138(8) & 0.1926(9) & 3(1) \\ C(112) & 0.781(1) & 0.138(8) & 0.1926(9) & 3(1) \\ C(112) & 0.781(1) & 0.1394(6) & 0.3270(8) & 29.1(6) \\ \end{array} \right)$	C(15)	-0.107(2)	0.2695(8)	-0.104(1)	7(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)	-0.039(2)	0.2394(9)	-0.059(1)	7(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(17)	-0.421(2)	0.3025(7)	-0.163(1)	8(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(21)	-0.062(2)	-0.0183(9)	0.274(1)	5(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	-0.183(2)	-0.0163(8)	0.282(1)	8(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(23)	-0.239(2)	-0.054(1)	0.316(1)	8(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(24)	-0.178(3)	-0.095(1)	0.342(1)	7(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(25)	-0.057(3)	- 0.097(1)	0.330(2)	9(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(26)	0.001(2)	-0.060(1)	0.298(1)	9(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(27)	-0.186(2)	-0.171(1)	0.397(2)	11(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(31)	0.181(2)	0.1082(9)	-0.053(1)	9.5(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(32)	0.209(2)	0.068(1)	-0.108(2)	14(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(33)	0.208(3)	0.182(1)	-0.163(2)	14(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(34)	0.229(3)	0.226(2)	-0.178(2)	20(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(35)	0.411(3)	0.157(1)	-0.073(2)	19(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(36)	0.479(2)	0.1396(9)	0.004(2)	11.6(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(41)	0.039(2)	0.2719(8)	0.155(1)	9.4(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(42)	0.009(2)	0.3116(9)	0.211(1)	10.0(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(43)	0.209(3)	0.336(1)	0.094(2)	15(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(44)	0.105(3)	0.346(1)	0.028(2)	13.2(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(45)	0.284(3)	0.271(1)	0.195(1)	12.8(9)
$\begin{array}{cccccc} C(51) & 0.162(2) & -0.0239(9) & 0.090(1) & 10.9(8) \\ C(52) & 0.175(3) & -0.046(1) & 0.013(2) & 15(1) \\ C(53) & 0.289(2) & -0.103(1) & 0.155(1) & 11.0(8) \\ C(54) & 0.173(3) & -0.128(1) & 0.171(1) & 14(1) \\ C(55) & 0.410(5) & -0.023(2) & 0.125(3) & 24(2) \\ C(56) & 0.472(4) & 0.013(1) & 0.138(2) & 20(1) \\ C(61) & 0.095(3) & 0.068(1) & 0.396(2) & 14(1) \\ C(62) & 0.099(3) & 0.094(1) & 0.467(2) & 22(2) \\ C(63) & 0.286(5) & -0.003(2) & 0.483(3) & 30(2) \\ C(64) & 0.193(4) & -0.031(1) & 0.473(2) & 18(1) \\ C(65) & 0.355(5) & 0.078(2) & 0.406(3) & 27(2) \\ C(66) & 0.463(4) & 0.073(1) & 0.376(2) & 20(1) \\ C(101) & 0.753(3) & 0.159(2) & 0.236(1) & 35(2) \\ C(111) & 0.624(2) & 0.1318(8) & 0.1926(9) & 43(1) \\ C(12) & 0.781(1) & 0.1394(6) & 0.3270(8) & 29.1(6) \\ \end{array}$	C(46)	0.400(3)	0.267(1)	0.187(1)	13.1(9)
$\begin{array}{ccccccc} C(52) & 0.175(3) & -0.046(1) & 0.013(2) & 15(1) \\ C(53) & 0.289(2) & -0.103(1) & 0.155(1) & 11.0(8) \\ C(54) & 0.173(3) & -0.128(1) & 0.171(1) & 14(1) \\ C(55) & 0.410(5) & -0.023(2) & 0.125(3) & 24(2) \\ C(56) & 0.472(4) & 0.013(1) & 0.138(2) & 20(1) \\ C(61) & 0.095(3) & 0.068(1) & 0.396(2) & 14(1) \\ C(62) & 0.099(3) & 0.094(1) & 0.467(2) & 22(2) \\ C(63) & 0.286(5) & -0.003(2) & 0.483(3) & 30(2) \\ C(64) & 0.193(4) & -0.031(1) & 0.473(2) & 18(1) \\ C(65) & 0.355(5) & 0.078(2) & 0.406(3) & 27(2) \\ C(66) & 0.463(4) & 0.073(1) & 0.376(2) & 20(1) \\ C(101) & 0.753(3) & 0.159(2) & 0.236(1) & 35(2) \\ C(111) & 0.624(2) & 0.1318(8) & 0.1926(9) & 43(1) \\ C(112) & 0.781(1) & 0.1394(6) & 0.3270(8) & 29.1(6) \\ \end{array}$	C(51)	0.162(2)	- 0.0239(9)	0.090(1)	10.9(8)
$\begin{array}{cccccc} C(53) & 0.289(2) & -0.103(1) & 0.155(1) & 11.0(8) \\ C(54) & 0.173(3) & -0.128(1) & 0.171(1) & 14(1) \\ C(55) & 0.410(5) & -0.023(2) & 0.125(3) & 24(2) \\ C(56) & 0.472(4) & 0.013(1) & 0.138(2) & 20(1) \\ C(61) & 0.095(3) & 0.068(1) & 0.396(2) & 14(1) \\ C(62) & 0.099(3) & 0.094(1) & 0.467(2) & 22(2) \\ C(63) & 0.286(5) & -0.003(2) & 0.483(3) & 30(2) \\ C(64) & 0.193(4) & -0.031(1) & 0.473(2) & 18(1) \\ C(65) & 0.355(5) & 0.078(2) & 0.406(3) & 27(2) \\ C(66) & 0.463(4) & 0.073(1) & 0.376(2) & 20(1) \\ C(101) & 0.753(3) & 0.159(2) & 0.236(1) & 35(2) \\ C(111) & 0.624(2) & 0.1318(8) & 0.1926(9) & 43(1) \\ C(122) & 0.781(1) & 0.1394(6) & 0.3270(8) & 29.1(6) \\ \end{array}$	C(52)	0.175(3)	-0.046(1)	0.013(2)	15(1)
$\begin{array}{ccccc} C(54) & 0.173(3) & -0.128(1) & 0.171(1) & 14(1) \\ C(55) & 0.410(5) & -0.023(2) & 0.125(3) & 24(2) \\ C(56) & 0.472(4) & 0.013(1) & 0.138(2) & 20(1) \\ C(61) & 0.095(3) & 0.068(1) & 0.396(2) & 14(1) \\ C(62) & 0.099(3) & 0.094(1) & 0.467(2) & 22(2) \\ C(63) & 0.286(5) & -0.003(2) & 0.483(3) & 30(2) \\ C(64) & 0.193(4) & -0.031(1) & 0.473(2) & 18(1) \\ C(65) & 0.355(5) & 0.078(2) & 0.406(3) & 27(2) \\ C(66) & 0.463(4) & 0.073(1) & 0.376(2) & 20(1) \\ C(101) & 0.753(3) & 0.159(2) & 0.236(1) & 35(2) \\ C(111) & 0.624(2) & 0.1318(8) & 0.1926(9) & 43(1) \\ C(122) & 0.781(1) & 0.1394(6) & 0.3270(8) & 29.1(6) \\ \end{array}$	C(53)	0.289(2)	-0.103(1)	0.155(1)	11.0(8)
$\begin{array}{ccccccc} C(55) & 0.410(5) & -0.023(2) & 0.125(3) & 24(2) \\ C(56) & 0.472(4) & 0.013(1) & 0.138(2) & 20(1) \\ C(61) & 0.095(3) & 0.068(1) & 0.396(2) & 14(1) \\ C(62) & 0.099(3) & 0.094(1) & 0.467(2) & 22(2) \\ C(63) & 0.286(5) & -0.003(2) & 0.483(3) & 30(2) \\ C(64) & 0.193(4) & -0.031(1) & 0.473(2) & 18(1) \\ C(65) & 0.355(5) & 0.078(2) & 0.406(3) & 27(2) \\ C(66) & 0.463(4) & 0.073(1) & 0.376(2) & 20(1) \\ C(101) & 0.753(3) & 0.159(2) & 0.236(1) & 35(2) \\ C(111) & 0.624(2) & 0.1318(8) & 0.1926(9) & 43(1) \\ C(112) & 0.781(1) & 0.1394(6) & 0.3270(8) & 29.1(6) \\ \end{array}$	C(54)	0.173(3)	-0.128(1)	0.171(1)	14(1)
$\begin{array}{ccccc} C(56) & 0.472(4) & 0.013(1) & 0.138(2) & 20(1) \\ C(61) & 0.095(3) & 0.068(1) & 0.396(2) & 14(1) \\ C(62) & 0.099(3) & 0.094(1) & 0.467(2) & 22(2) \\ C(63) & 0.286(5) & -0.003(2) & 0.483(3) & 30(2) \\ C(64) & 0.193(4) & -0.031(1) & 0.473(2) & 18(1) \\ C(65) & 0.355(5) & 0.078(2) & 0.406(3) & 27(2) \\ C(66) & 0.463(4) & 0.073(1) & 0.376(2) & 20(1) \\ C(101) & 0.753(3) & 0.159(2) & 0.236(1) & 35(2) \\ C(111) & 0.624(2) & 0.1318(8) & 0.1926(9) & 43(1) \\ C(112) & 0.781(1) & 0.1394(6) & 0.3270(8) & 29.1(6) \\ \end{array}$	C(55)	0.410(5)	-0.023(2)	0.125(3)	24(2)
$\begin{array}{cccccc} C(61) & 0.095(3) & 0.008(1) & 0.396(2) & 14(1) \\ C(62) & 0.099(3) & 0.094(1) & 0.467(2) & 22(2) \\ C(63) & 0.286(5) & -0.003(2) & 0.483(3) & 30(2) \\ C(64) & 0.193(4) & -0.031(1) & 0.473(2) & 18(1) \\ C(65) & 0.355(5) & 0.078(2) & 0.406(3) & 27(2) \\ C(66) & 0.463(4) & 0.073(1) & 0.376(2) & 20(1) \\ C(101) & 0.753(3) & 0.159(2) & 0.236(1) & 35(2) \\ C(111) & 0.624(2) & 0.1318(8) & 0.1926(9) & 43(1) \\ C(112) & 0.781(1) & 0.1394(6) & 0.3270(8) & 29.1(6) \\ \end{array}$	C(56)	0.472(4)	0.013(1)	0.138(2)	20(1)
$\begin{array}{ccccccc} C(62) & 0.099(3) & 0.094(1) & 0.467(2) & 22(2) \\ C(63) & 0.286(5) & -0.003(2) & 0.483(3) & 30(2) \\ C(64) & 0.193(4) & -0.031(1) & 0.473(2) & 18(1) \\ C(65) & 0.355(5) & 0.078(2) & 0.406(3) & 27(2) \\ C(66) & 0.463(4) & 0.073(1) & 0.376(2) & 20(1) \\ C(101) & 0.753(3) & 0.159(2) & 0.236(1) & 35(2) \\ C(111) & 0.624(2) & 0.1318(8) & 0.1926(9) & 43(1) \\ C(12) & 0.781(1) & 0.1394(6) & 0.3270(8) & 29.1(6) \\ \end{array}$	C(61)	0.095(3)	0.068(1)	0.396(2)	14(1)
$\begin{array}{ccccccc} C(65) & 0.286(5) & -0.003(2) & 0.483(3) & 30(2) \\ C(64) & 0.193(4) & -0.031(1) & 0.473(2) & 18(1) \\ C(65) & 0.355(5) & 0.078(2) & 0.406(3) & 27(2) \\ C(66) & 0.463(4) & 0.073(1) & 0.376(2) & 20(1) \\ C(101) & 0.753(3) & 0.159(2) & 0.236(1) & 35(2) \\ Cl(11) & 0.624(2) & 0.1318(8) & 0.1926(9) & 43(1) \\ Cl(12) & 0.781(1) & 0.1394(6) & 0.3270(8) & 29.1(6) \\ \end{array}$	C(62)	0.099(3)	0.094(1)	0.46/(2)	22(2)
$\begin{array}{ccccccc} C(64) & 0.193(4) & -0.031(1) & 0.473(2) & 18(1) \\ C(65) & 0.355(5) & 0.078(2) & 0.406(3) & 27(2) \\ C(66) & 0.463(4) & 0.073(1) & 0.376(2) & 20(1) \\ C(101) & 0.753(3) & 0.159(2) & 0.236(1) & 35(2) \\ Cl(11) & 0.624(2) & 0.1318(8) & 0.1926(9) & 43(1) \\ Cl(12) & 0.781(1) & 0.1394(6) & 0.3270(8) & 29.1(6) \\ \end{array}$	C(03)	0.286(5)	-0.003(2)	0.483(3)	3U(2) 19(1)
C(05) $0.555(5)$ $0.076(2)$ $0.400(5)$ $27(2)$ $C(66)$ $0.463(4)$ $0.073(1)$ $0.376(2)$ $20(1)$ $C(101)$ $0.753(3)$ $0.159(2)$ $0.236(1)$ $35(2)$ $Cl(11)$ $0.624(2)$ $0.1318(8)$ $0.1926(9)$ $43(1)$ $Cl(12)$ $0.781(1)$ $0.1394(6)$ $0.3270(8)$ $29.1(6)$	C(64)	0.193(4)	-0.031(1)	0.4/3(2)	10(1) 27(2)
$\begin{array}{ccccccc} C(00) & 0.405(4) & 0.075(1) & 0.570(2) & 20(1) \\ C(101) & 0.753(3) & 0.159(2) & 0.236(1) & 35(2) \\ C(11) & 0.624(2) & 0.1318(8) & 0.1926(9) & 43(1) \\ C(12) & 0.781(1) & 0.1394(6) & 0.3270(8) & 29.1(6) \\ \end{array}$	C(65)	0.333(3)	0.078(2)	0.400(3)	27(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(101)	0.403(4)	0.073(1)	0.3/0(2) 0.226(1)	20(1) 35(2)
C_{11} 0.024(2) 0.1310(6) 0.1920(9) 45(1) C_{11} 0.781(1) 0.1394(6) 0.3270(8) 29.1(6)	C(101)	0.733(3)	0.135(2)	0.230(1)	$\Delta 3(1)$
	Cl(12)	0.781(1)	0.1394(6)	0.3270(8)	29.1(6)

Table 3 Selected bond distances (Å) and angles (°) for **2b**

Bond distances			
Pt(1)-Cl(1)	2.410(5)	Pt(2)-Cl(2)	2.392(6)
Pt(1)-P(1)	2.295(7)	Pt(2)-P(3)	2.292(6)
Pt(1)-P(2)	2.291(6)	Pt(2)-P(4)	2.300(7)
Pt(1)-C(1)	2.01(2)	Pt(2)-C(6)	1.99(2)
C(1)-C(2)	1.46(3)	C(5)-C(6)	1.47(3)
C(1)-N(1)	1.26(3)	C(6)-N(2)	1.28(3)
C(2)-C(3)	1.42(3)	C(4)–C(5)	1.36(3)
C(2)-S(1)	1.71(2)	C(5)-S(1)	1.74(2)
C(3)C(4)	1.39(3)		
Bond angles			
Cl(1)-Pt(1)-P(1)	89.5(2)	Cl(2)-Pt(2)-P(3)	87.9(2)
Cl(1)-Pt(1)-P(2)	90.1(2)	Cl(2) - Pt(2) - P(4)	89.9(2)
Cl(1)-Pt(1)-C(1)	178.8(3)	Cl(2)-Pt(2)-C(6)	178.1(6)
P(1)-Pt(1)-P(2)	178.0(2)	P(3)-Pt(2)-P(4)	174.0(3)
P(1)-Pt(1)-C(1)	91.1(2)	P(3)-Pt(2)-C(6)	91.9(6)
P(2)-Pt(1)-C(1)	89.3(3)	P(4)-Pt(2)-C(6)	90.4(6)
Pt(1)-C(1)-N(1)	133(1)	Pt(2)-C(6)-N(2)	130(1)
Pt(1)-C(1)-C(2)	115(1)	Pt(2)-C(6)-C(5)	116(1)

SiMe₄ was used for ¹H and ¹³C NMR, and PPh₃ was used for ³¹P NMR external standard. IR spectra were recorded on a JASCO A-202 IR spectrophotometer.

The 2,5-thienylene-bridged diplatinum complexes $Cl(COD)PtC_4H_2SPt(COD)Cl$ and $Cl(Bu_3P)_2$ - $PtC_4H_2SPt(PBu_3)_2Cl$ were synthesized as described previously [2], and the 2-thienyl platinum complex $C_4H_3SPt(COD)Cl$ was prepared by the literature method [8]. Aryl isocyanides were prepared by either the dehydration of formanilide analogues [9] or the carbylamine reaction in the presence of a phase transfer catalyst [10]. *tert*-Butyl isocyanide and triethylphosphine were purchased from Aldrich, and tributylphosphine from Wako Chemicals.

3.1. Preparation of $Cl(Et_3P)_2PtC_4H_2SPt(PEt_3)_2Cl$ (1a)

Cl(COD)PtC₄H₂SPt(COD)Cl (1.3 g, 1.7 mmol) was dissolved in 70 ml of dichloromethane, and 1 M tetrahydrofuran (THF) solution of triethylphosphine (6.9 ml, 6.9 mmol) was added. After the reaction mixture had been stirred at room temperature for 15 h, the solvent was removed in vacuo. The residue was purified by alumina column chromatography with benzene followed by recrystallization from ethanol to give color-less crystals (1.75 g (53%)).

Melting point (m.p.), 171–174°C. ¹H NMR: δ 6.39 (s, ³J_{Pt-H} = 45.9 Hz, 2H, thienylene), 1.72 (m, 24H, CH₂), 1.11 (dt, J = 15.6, 7.8 Hz, 36H, CH₃). ¹³C NMR: δ 128.77 (²J_{Pt-C} = 76.9 Hz, ³J_{Pt-C} = 59.6 Hz, thienylene), 124.08 (¹J_{Pt-C} = 1089 Hz, ²J_{P-C} = 11.2 Hz, thienylene), 12.85 (t, J = 17.0 Hz, CH₂), 7.83(CH₃). ³¹P NMR: δ 18.91 (¹ $J_{Pt-P} = 2673$ Hz). Anal. Found: C, 33.16; H, 6.36; Cl, 6.70; P, 11.96; S, 3.22. C₂₈H₆₂Cl₂P₄SPt₂ Calc.: C, 33.11; H, 6.15; Cl, 6.98; P, 12.20; S, 3.16%.

3.2. Preparation of $C_4H_3SPt(PEt_3)_2Cl$ (4a)

 $C_4H_3SPt(COD)Cl$ (2.0 g, 2.8 mmol) was treated with 1 M THF solution of triethylphosphine (9.6 ml, 9.6 mmol) in 140 ml of dichloromethane at room temperature for 24 h. The volatile was removed and the residue was purified by alumina column chromatography using benzene as an eluent. Recrystallization from ethanol gave colorless crystals (1.53 g (58%)).

M.p., 70–74°C. ¹H NMR: δ 7.36 (d, J = 4.9 Hz, 1H, thienyl), 6.93 (dd, J = 4.9, 3.4 Hz, 1H, thienyl), 6.58 (d, J = 3.4, ${}^{3}J_{Pt-H} = 47.3$ Hz, 1H, thienyl), 1.72–1.65 (m, 12H, CH₂), 1.10 (dt, J = 16.6, 7.8 Hz, 18H, CH₃). ³¹P NMR: δ 18.90 (${}^{1}J_{Pt-P} = 2674$ Hz). Anal. Found: C, 34.95; H, 6.28; Cl, 6.28; P, 11.22; S, 5.66. C₁₆H₃₃ClP₂SPt Calc.: C, 34.94; H, 6.05; Cl, 6.45; P, 11.26; S, 5.83%.

3.3. Preparation of $C_4H_3SPt(PBu_3)_2Cl$ (4b)

A similar treatment of C₄H₃SPt(COD)Cl (1.0 g, 1.2 mmol) with tributylphosphine (0.98 g, 4.8 mmol) as described above gave colorless crystals (0.92 g (73%)). M.p., $34-37^{\circ}$ C. ¹H NMR: δ 7.34 (d, J = 4.9 Hz, 1H, thienyl), 6.92 (dd, J = 4.9, 3.4 Hz, 1H, thienyl), 6.54 (d, J = 3.4 Hz, ³ $J_{Pt-H} = 45.9$ Hz, 1H, thienyl), 1.66–1.33 (m, 36H, CH₂), 0.92 (t, J = 7.1 Hz, 18H, CH₃), ³¹P NMR: δ 12.19(¹ $J_{Pt-P} = 2573$ Hz). Anal. Found: C, 46.65; H, 8.14; Cl, 4.78; P, 8.61; S, 4.47. C₂₈H₅₇ClP₂SPt Calc.: C, 46.82; H, 8.00; Cl, 4.94; P, 8.62; S, 4.46%.

3.4. Preparation of $Cl(Et_3P)_2PtC(=NC_6H_4Me-p)-C_4H_2SC(=NC_6H_4Me-p)Pt(PEt_3)_2Cl$ (2a)

To a solution of 1a (200 mg, 0.20 mmol) in 20 ml of 1,2-dichloroethane was added *p*-tolyl isocyanide (46 mg, 0.39 mmol). After being stirred for 18 h under reflux, the solvent was removed under reduced pressure and the residue purified by chromatography on alumina using dichloromethane as an eluent. Recrystallization from dichloromethane-hexane gave yellow crystals (102 mg (41%)).

M.p., 226–228°C. IR: ν (C=N) 1525 cm⁻¹. ¹H NMR: δ 8.01 (d, J = 8.3 Hz, 4H, C₆H₄), 7.84 (s, 2H, thienylene), 7.1 (d, J = 8.3 Hz, 4H, C₆H₄), 2.31 (s, 6H, C₆H₄CH₃), 1.75–1.69 (m, 24H, CH₂), 1.03 (dt, J =16.1, 7.8 Hz, 36H, CH₂CH₃). ³¹P NMR: δ 15.09 (¹J_{Pt-P} = 2815 Hz). Anal. Found: C, 42.09; H, 6.01; N, 1.98; Cl, 5.71; P, 9.93; S, 2.60. C₄₄H₇₆N₂Cl₂P₄SPt₂ Calc.: C, 42.27; H, 6.13; N, 2.24; Cl, 5.67; P, 9.91; S, 2.57%. 3.5. Preparation of $Cl(Et_3P)PtC(=NC_6H_4OMe-p)C_4H_2SC(=NC_6H_4OMe-p)Pt(PEt_3)_2Cl(2b)$ and $Cl-(Et_3P)_2PtC(=NC_6H_4NO_{2-p})C_4H_2SC(=NC_6H_4NO_{2-p})Pt(PEt_3)_2Cl(2c)$

These reactions were carried out by a method similar to that of **2a** to give **2b** with a 44% yield and **2c** with a 47% yield respectively. The crystals of **2b** contained one equivalent of CH_2Cl_2 , which is confirmed by ¹H NMR.

2b: m.p., 210–214°C. IR: ν (C=N) 1490 cm⁻¹. ¹H NMR: δ 8.17 (d, J = 8.8 Hz, 4H, C₆H₄), 7.84 (s, 2H, thienylene), 6.86 (d, J = 8.8 Hz, 4H, C₆H₄), 3.81 (s, 6H, OCH₃), 1.76–1.69 (m, 24H, CH₂), 1.03 (dt, J =15.6, 7.8 Hz, 36H, CH₃). ³¹P NMR: δ 15.09(¹ $J_{Pt-P} =$ 2809 Hz). Anal. Found: C 39.50; H, 5.81; N, 2.03; Cl, 10.27; P, 8.80; S, 2.25. C₄₄H₇₆N₂Cl₂O₂P₄SPt₂ · CH₂Cl₂ Calc.: C, 39.54; H, 5.75; N, 2.05; Cl, 10.37; P, 9.06; S, 2.34%.

2c: m.p., 254–264°C (decomposition). IR: ν (C=N) 1530 cm⁻¹. ¹H NMR: δ 8.21 (d, J = 8.8 Hz, 4H, C₆H₄), 8.08 (d, J = 8.8 Hz, 4H, C₆H₄), 7.96 (s, 2H, thienylene), 1.80–1.72 (m, 24H, CH₂), 1.03 (dt, J = 16.1, 8.1 Hz, 36H, CH₃). ³¹P NMR: δ 15.74 (¹ $J_{Pt-P} = 2720$ Hz). Anal. Found: C, 38.58; H, 5.35; N, 4.14; Cl, 5.68; P, 9.32; S, 2.46. C₄₂H₇₀N₄Cl₂O₄P₄SPt₂ Calc.: C, 38.45; H, 5.38; N, 4.27; Cl, 5.40; P, 9.44; S, 2.44%.

3.6. Preparation of $Cl(Bu_3P)_2PtC(=NC_6H_4Me-p)C_4H_2SC(=NC_6H_4Me-p)Pt(PBu_3)_2Cl(2d)$

Complex 1b (200 mg, 0.15 mmol) was treated with p-tolyl isocyanide (36 mg, 0.30 mmol) in 20 ml of 1,2-dichloroethane under reflux for 18 h. A pure sample of 2d (218 mg (92%)) was obtained as yellow oil by alumina column chromatography with benzene.

IR: ν (C=N) 1540 cm⁻¹. ¹H NMR: δ 7.89 (d, J = 8.3 Hz, 4H, C₆H₄), 7.82 (s, 2H, thienylene), 7.08 (d, J = 8.3 Hz, 4H, C₆H₄), 2.31 (s, 6H, C₆H₄CH₃), 1.68–1.63 (m, 24H, PCH₂), 1.41–1.24 (m, 48H, CH₂), 0.86 (t, J = 7.1 Hz, 36H, CH₂CH₃). ³¹P NMR: δ 8.82 (¹ $J_{Pt-P} = 2809$ Hz). Anal. Found: C, 51.25; H, 8.07; N, 1.76; Cl, 4.68; P, 8.07; S, 2.28. C₆₈H₁₂₄N₂Cl₂P₄SPt₂ Calc.: C, 51.47; H, 7.88; N, 1.77; Cl, 4.46; P, 7.81; S, 2.02%.

3.7. Preparation of $Cl(Bu_3P)_2PtC(=NC_6H_4OMe-p)C_4H_2SC(=NC_6H_4OMe-p)Pt(PBu_3)_2Cl$ (2e)

A similar treatment of 1b with two equivalents of p-methoxyphenyl isocyanide to that of 2d gave 2e as yellow oil with a 41% yield.

IR: ν (C=N) 1495 cm⁻¹. ¹H NMR: δ 8.07 (d, J = 8.8 Hz, 4H, C₆H₄), 7.81 (s, 2H, thienylene), 6.83 (d, J = 8.8 Hz, 4H, C₆H₄), 3.80 (s, 6H, OCH₃), 1.70–1.65 (m, 24H, PCH₂), 1.42–1.25 (m, 48H, CH₂), 0.86 (t, J = 7.1 Hz, 36H, CH₃). ³¹P NMR: δ 8.86 (¹J_{Pt-P} = 2803 Hz).

Anal. Found: C, 50.46; H, 7.89; N, 1.54; Cl, 4.22; P, 7.66; S, 2.26. $C_{68}H_{124}N_2Cl_2O_2P_4SPt_2$ Calc.: C, 50.45; H, 7.72; N, 1.73; Cl, 4.38; P, 7.65; S, 1.98%.

3.8. Preparation of $Cl(Bu_3P)_2PtC(=NC_6H_4NO_2-p)C_4H_2SC(=NC_6H_4NO_2-p)Pt(PBu_3)_2Cl(2f)$

Complex 1b (200 mg, 0.15 mmol) was treated with p-nitrophenyl isocyanide (89 mg, 0.60 mmol) in 1,2-dichloroethane under reflux. After 20 h the solvent was evaporated under reduced pressure, and the product was isolated by alumina column chromatography. Elution with benzene followed by recrystallization from hexane gave 2f (101 mg (35%)) as orange crystals.

M.p., 164–167°C. IR: ν (C=N) 1520 cm⁻¹, ¹H NMR: δ 8.20 (d, J = 8.8 Hz, 4H, C₆H₄), 7.98 (d, J = 8.8 Hz, 4H, C₆H₄), 7.92 (s, 2H, thienylene), 1.74–1.68 (m, 24H, PCH₂), 1.40–1.26 (m, 48H, CH₂), 0.86 (t, J = 7.1 Hz, 36H, CH₃). ³¹P NMR: δ 7.36 (¹J_{Pt-P} = 2779 Hz). Anal. Found: C, 48.08; H, 6.95; N, 3.33; Cl, 4.33; P, 7.31; S, 1.88. C₆₆H₁₁₈N₄Cl₂O₄P₄SPt₂ Calc.: C, 48.08; H, 7.21; N, 3.40; Cl, 4.30; P, 7.51; S, 1.94%.

3.9. Preparation of $C_4H_3SC(=NC_6H_4Me_p)Pt(PEt_3)_2Cl$ (5a)

A solution of 4a (200 mg, 0.36 mmol) in 20 ml of 1,2-dichloroethane was treated with *p*-tolyl isocyanide (43 mg, 0.36 mmol). After the reaction mixture had been stirred for 17 h under reflux, the solvent was evaporated under reduced pressure. The residue was purified by column chromatography on alumina with benzene followed by recrystallization from dichloromethane-hexane to give yellow crystals (187 mg (77%)).

M_P, 167–169°C; IR: ν (C=N) 1530 cm⁻¹. ¹H NMR: δ 7.96 (d, J = 8.3 Hz, 2H, C₆H₄), 7.92 (dd, J = 3.5, 1.0 Hz, 1H, thienyl), 7.35 (dd, J = 4.9, 1.0 Hz, 1H, thienyl), 7.11 (d, J = 8.3 Hz, 2H, C₆H₄), 7.03 (dd, J = 4.9, 3.5 Hz, 1H, thienyl), 2.31 (s, 3H, C₆H₄CH₃), 1.77–1.64 (m, 12H, CH₂), 1.02 (dt, J = 15.6, 7.8 Hz, 18H, CH₂CH₃). ³¹P NMR: δ 15.09 (¹J_{Pt-P} = 2815 Hz), Anal. Found: C, 43.19; H, 6.11; N, 2.10; Cl, 5.20; P, 9.10; S, 4.77. C₂₄H₄₀NCIP₂SPt Calc.: C, 43.21; H, 6.04; N, 2.10; Cl, 5.31; P, 9.29; S, 4.81%.

3.10. Preparation of $C_4H_3SC(=NC_6H_4OMe-p)Pt(PEt_3)_2Cl(5b)$ and $C_4H_3SC(=NC_6H_4NO_2-p)Pt(PEt_3)_2Cl(5c)$

These reactions were performed by a method similar to that of 5a to afford 5b with a 57% yield and 5c with a 41% yield.

5b: m.p., 162–163°C. IR: ν (C=N) 1530 cm⁻¹. ¹H NMR: δ 8.12 (d, J = 8.3 Hz, 2H, C₆H₄), 7.91 (d, J = 3.9 Hz, 1H, thienyl), 7.34 (d, J = 4.9 Hz, 1H, thienyl), 7.03 (dd, J = 4.9, 3.9 Hz, 1H, thienyl), 6.86 (d, J = 8.3 Hz, 2H, C₆H₄), 3.81 (s, 3H, OCH₃), 1.78–1.64 (m, 12H, CH₂), 1.03 (dt, J = 15.6, 7.8 Hz, 18H, CH₃). ³¹P NMR: δ 15.16 (¹ $J_{Pt-P} = 2797$ Hz). Anal. Found: C, 42.41; H, 6.01; N, 2.11; Cl, 5.22; P, 9.05; S, 4.69. C₂₄H₄₀NClOP₂SPt Calc.: C, 42.20; H, 5.90; N, 2.05; Cl, 5.19; P, 9.07; S, 4.69%.

5c: m.p., 168–170°C. IR: ν (C=N) 1510 cm⁻¹. ¹H NMR: δ 8.21 (d, J = 8.8 Hz, 2H, C₆H₄), 8.03 (d, J = 8.8 Hz, 2H, C₆H₄), 8.00 (d, J = 3.4 Hz, 1H, thienyl), 7.46 (d, J = 5.3 Hz, 1H, thienyl), 7.08 (dd, J = 5.3, 3.4 Hz, 1H, thienyl), 1.77–1.69 (m, 12H, CH₂), 1.02 (dt, J = 15.6, 7.8 Hz, 18H, CH₃). ³¹P NMR: δ 15.82 (¹J_{Pt-P} = 2720 Hz). Anal. Found: C, 39.37; H, 5.24; N, 3.82; Cl, 4.87; P, 8.65; S, 4.44. C₂₃H₃₇N₂ClO₂P₂SPt calc.: C, 39.57; H, 5.34; N, 4.01; Cl, 5.08; P, 8.87; S, 4.59%.

3.11. Preparation of $C_4H_3SC(=NC_6H_4Me-p)Pt-(PBu_3)_2Cl(5d)$

To a solution of **4b** (200 mg, 0.28 mmol) in 20 ml of 1,2-dichloroethane was added *p*-tolyl isocyanide (33 mg, 0.28 mmol). The reaction mixture was stirred for 16 h under reflux, and the solvent was removed in vacuo. The residue was purified by alumina column chromatography with benzene. Recrystallization from hexane to give yellow crystals (128 mg (55%)).

M.p., 83–85°C. IR: ν (C=N) 1525 cm⁻¹. ¹H NMR: δ 7.88 (d, J = 2.9 Hz, 1H, thienyl), 7.80 (d, J = 8.3 Hz, 2H, C₆H₄), 7.33 (d, J = 5.4 Hz, 1H, thienyl), 7.08 (d, J = 8.3 Hz, 2H, C₆H₄), 7.00 (dd, J = 5.4, 2.9 Hz, 1H, thienyl), 2.31 (s, 3H, C₆H₄CH₃), 1.67–1.60 (m, 12H, PCH₂), 1.39–1.23 (m, 24H, CH₂), 0.85 (t, J = 7.1 Hz, 18H, CH₂CH₃). ³¹P NMR: δ 6.88 (¹J_{Pt-P} = 2785 Hz). Anal. Found: C, 51.59; H, 7.63; N, 1.61; Cl, 4.19; P, 7.34; S, 4.04. C₃₆H₆₄NClP₂SPt calc.: C, 51.76; H, 7.72; N, 1.68; Cl, 4.24; P, 7.41; S, 3.84%.

3.12. Preparation of $C_4H_3SC(=NC_6H_4OMe-p)Pt-(PBu_3)_2Cl(5e)$ and $C_4H_3SC(=NC_6H_4NO_2-p) + Pt-(PBu_3)_2Cl(5f)$

By a similar method to that mentioned above, **5e** and **5f** were produced with 74% and 66% yields respectively.

5e m.p., 111–113°C. IR: ν (C=N) 1530 cm⁻¹. ¹H NMR: δ 7.97 (d, J = 8.8 Hz, 2H, C₆H₄), 7.87 (d, J = 2.9 Hz, 1H, thienyl), 7.32 (d, J = 5.4 Hz, 1H, thienyl), 7.00 (dd, J = 5.4, 2.9 Hz, 1H, thienyl), 6.83 (d, J = 8.8 Hz, 2H, C₆H₄), 3.80 (s, 3H, OCH₃), 1.68–1.61 (m, 12H, PCH₂), 1.40–1.24 (m, 24H, CH₂), 0.85 (t, J = 7.1 Hz, 18H, CH₃). ³¹P NMR: δ 8.75 (¹J_{Pt-P} = 2785 Hz). Anal. Found: C, 50.97; H, 7.73; N, 1.73; Cl, 4.11; P, 7.19; S, 3.78. C₃₆H₆₄NClOP₂SPt Calc.: C, 50.78; H, 7.58; N, 1.65; Cl, 4.16; P, 7.28; S, 3.77%.

5f: m.p., 151–153°C: IR: ν (C=N) 1510 cm⁻¹. ¹H NMR: δ 8.19 (d, J = 8.8 Hz, 2H, C₆H₄), 7.96 (d, J = 3.9 Hz, 1H, thienyl), 7.91 (d, J = 8.8 Hz, 2H, C₆H₄), 7.44 (d, J = 4.9 Hz, 1H, thienyl), 7.05 (dd, J = 4.9, 3.9 Hz, 1H, thienyl), 1.71–1.62 (m, 12H, PCH₂), 1.38–1.25 (m, 24H, CH₂), 0.85 (t, J = 7.1 Hz, 18H, CH₃). ³¹P NMR: δ 9.45 (¹ $J_{Pt-P} = 2708$ Hz). Anal. Found: C, 48.28; H, 7.04; N, 3.25; Cl, 4.35; P, 7.11; S, 3.77. C₃₅H₆₁N₂ClO₂P₂SPt Calc.: C, 48.52; H, 7.10; N, 3.23; Cl, 4.09; P, 7.15; S, 3.70%.

3.13. Preparation of $Cl(Et_3P)_2PtC(=NC_6H_4Me-p)C_4H_2SPt(PEt_3)_2Cl$ (6)

A solution of 1a (172 mg, 0.17 mmol) in 20 ml of 1,2-dichloroethane was treated with *p*-tolyl isocyanide (20 mg, 0.17 mmol) under reflux for 46 h. The solvent was removed under reduced pressure, and the products were separated by silica gel column chromatography. Elution with dichloromethane gave the mixture (30 mg) of 1a and 2a in 2:1 molar ratio, and elution with ethyl acetate gave 6 (90 mg (47%)). An analytically pure sample of 6 was obtained as yellow crystals by recrystallization from dichloromethane-hexane.

M.p., 182–185°C (decomposition). IR: ν (C=N) 1520 cm⁻¹. ¹H NMR: δ 7.85 (d, J = 7.8 Hz, 2H, C₆H₄), 7.84 (d, J = 3.4 Hz, 1H, thienylene), 7.07 (d, J = 7.8 Hz, 2H, C₆H₄), 6.62 (d, J = 3.4 Hz, ³ J_{Pt-H} = 49.3 Hz, 1H, thienylene), 2.29 (s, 3H, C₆H₄CH₃), 1.79–1.71 (m, 24H, CH₂), 1.10 (dt, J = 16.6, 7.8 Hz, 18H, CH₂CH₃), 1.01 (dt, J = 15.6, 7.8 Hz, 18H, CH₂CH₃). ³¹P NMR: δ 19.73 (¹ J_{Pt-P} = 2613 Hz), 14.90 (¹ J_{Pt-P} = 2872 Hz). Anal. Found: C, 37.97; H, 5.96; N, 1.17; Cl, 6.27; P, 10.97; S, 2.81. C₃₆H₆₉NCl₂P₄SPt₂ Calc.: C, 38.16; H, 6.14; N, 1.24; Cl, 6.26; P, 10.94; S, 2.83%.

3.14. X-ray crystallography of $Cl(Et_3P)_2PtC-(=NC_6H_4OMe-p)C_4H_2SC(=NC_6H_4OMe-p)Pt(PEt_3)_2-Cl-CH_2Cl_2(2b)$

A single crystal $(0.30 \times 0.20 \times 0.15 \text{ mm})$ suitable for an X-ray diffraction analysis was mounted on glass fibers with epoxy resin. Diffraction measurements were made on a Rigaku AFC5R diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.710$ 69 Å) using a $\omega - 2\theta$ scan technique with a scan rate of 8° min⁻¹. The unit cell was determined and refined by a least-squares method using 24 reflections in the range $25.0^{\circ} < 2\theta < 27.6^{\circ}$. The data of weak reflections (I < $10\sigma(I)$) were rescanned two times and averaged. Three standard reflections were monitored at every 150 measurements and no damage was observed. Intensities were collected for Lorentz and polarization effects and an empirical absorption collection was applied using DIFABS [11]. The scattering factors were taken from the International Tables for X-ray Crystallography [12].

The structure was solved by the direct method. The non-hydrogen atoms except the carbon atoms of triethylphosphine were refined anisotropically, and isotropic thermal parameters were used for the carbon atoms of triethylphosphine. The large thermal parameters for the carbon atoms of triethylphosphine are related to the slight disorder as well as thermal motion, but a satisfactory disorder model could not be devised. All hydrogen atoms were included at the calculated positions. The final cycles of full-matrix least-squares refinement was converged; the largest parameter shift against its error was 0.54. The unweighted and weighted agreement factors are $R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o| =$ 0.039 and $R_w = [\Sigma w(|F_0| - |F_c|)^2 / \Sigma w F_0^2]^{1/2} = 0.044$ respectively. All calculations were performed on VAX station 3100 using the TEXSAN crystallographic software package [13].

Acknowledgments

We are grateful for support of this work by the Grant-in-Aid for Scientific Research on Priority Area of Reactive Organometallics No. 05236106 from the Ministry of Education, Science and Culture, Japan.

References

- (a) J. Halton, M.F. Lappert, R. Pearce and P.I.W. Yarrow, *Chem. Rev.*, 83 (1983) 135; (b) W. Beck, B. Niemer and M. Wiesser, Angew. Chem., Int. Edn. Engl., 32 (1993) 923.
- [2] K. Kotani, K. Shiina and K. Sonogashira, J. Organomet. Chem., 429 (1992) 403.
- [3] (a) H. Ogawa, T. Joh and S. Takahashi, J. Chem. Soc., Chem. Commun., (1988) 561; (b) K. Onitsuka, H. Ogawa, T. Joh, S. Takahashi, Y. Yamamoto and H. Yamazaki, J. Chem. Soc., Dalton Trans., (1991) 1531; (c) K. Onitsuka, T. Joh and S. Takahashi, Angew. Chem., Int. Edn. Engl., 31 (1992) 851; (d) K. Onitsuka, T. Joh and S. Takahashi, J. Organomet. Chem., 464 (1994) 247.
- [4] (a) P.M. Treichel, Adv. Organomet. Chem., 11 (1973) 21; (b) Y. Yamamoto and H. Yamazaki, Coord. Chem. Rev., 32 (1980) 193; (c) E. Singlton and E.H. Oosthnzen, Adv. Organomet. Chem., 22 (1983) 209.
- [5] A. Mantovani, L. Calligaro and A. Pasquetto, *Inorg. Chim. Acta*, 76 (1983) L145.
- [6] S. Otsuka and K. Ataka, J. Chem. Soc., Dalton Trans., (1976) 327.
- [7] K.P. Wagner, P.M. Treichel and J.C. Calagrese, J. Organomet. Chem., 71 (1974) 299.
- [8] C. Eaborn, K.J. Odell and A. Pidcock, J. Chem. Soc., Dalton Trans., (1978) 357.
- [9] R. Obrecht, R. Herrmann and I. Ugi, Synthesis, (1985) 400.
- [10] W.P. Weber and G.W. Gokel, Tetrahedron Lett., (1972) 1637.
- [11] N. Walker and D. Stuart, *Acta Crystallogr. Sect. A* 39 (1983) 158.
- [12] D.T. Cromer and J.T. Waber, International Tables for X-ray Crystallography, Vol. IV, Kynoch, Birmingham, 1974.
- [13] TEXSAN-TEXRAY Structure Analysis Package, Molecular Structure Corporation, 1985.